m at h . A P ] 2 4 A ug 2 00 5 Minimizers for the Hardy - Sobolev - Maz ’ ya inequality

نویسنده

  • K. Tintarev
چکیده

We show existence of minimizers for the Hardy-Sobolev-Maz’ya inequality in Rm+n \ Rn when either m > 2, n ≥ 1 or m = 1, n ≥ 3. The authors expresses their gratitude to the faculties of mathematics department at Technion Haifa Institute of Technology and of the University of Cyprus for their hospitality. A.T. acknowledges partial support by the RTN European network Fronts–Singularities, HPRN-CT-2002-00274. K.T acknowledges support as a Lady Davis Visiting Professor at Technion and partial support from University of Crete and Swedish Research Council. Mathematics Subject Classifications: 35J65, 35J20, 35J70.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 N ov 2 00 5 On existence of minimizers for the Hardy - Sobolev - Maz ’ ya inequality

We show existence of minimizers for the Hardy-Sobolev-Maz’ya inequality in Rm+n \ Rn when either m > 2, n ≥ 1 or m = 1, n ≥ 3. The authors expresses their gratitude to the faculties of mathematics departments at Technion Haifa Institute of Technology, at the University of Crete and of the University of Cyprus for their hospitality. A.T. acknowledges partial support by the RTN European network F...

متن کامل

ar X iv : 0 90 8 . 15 57 v 4 [ m at h . FA ] 1 5 A ug 2 00 9

An affine rearrangement inequality is established which strengthens and implies the recently obtained affine Pólya–Szegö symmetrization principle for functions on R. Several applications of this new inequality are derived. In particular, a sharp affine logarithmic Sobolev inequality is established which is stronger than its classical Euclidean counterpart.

متن کامل

ar X iv : m at h / 05 02 50 5 v 2 [ m at h . A P ] 1 1 A ug 2 00 5 Some Remarks on Strichartz Estimates for Homogeneous Wave Equation ∗

We give several remarks on Strichartz estimates for homogeneous wave equation with special attention to the cases of Lx estimates, radial solutions and initial data from the inhomogeneous Sobolev spaces. In particular, we give the failure of the endpoint estimate L 4 n−1 t Lx for n = 2, 3 even for data in inhomogeneous Sobolev spaces.

متن کامل

ar X iv : 0 90 4 . 42 75 v 1 [ m at h . FA ] 2 7 A pr 2 00 9 INVERSION POSITIVITY AND THE SHARP HARDY – LITTLEWOOD – SOBOLEV INEQUALITY

We give a new proof of certain cases of the sharp HLS inequality. Instead of symmetric decreasing rearrangement it uses the reflection positivity of inversions in spheres. In doing this we extend a characterization of the minimizing functions due to Li and Zhu.

متن کامل

m at h . D G ] 1 A ug 2 00 6 EXISTENCE AND UNIQUENESS FOR P - AREA MINIMIZERS IN THE HEISENBERG GROUP

In [3], we studied p-mean curvature and the associated p-minimal surfaces in the Heisenberg group from the viewpoint of PDE and differential geometry. In this paper, we look into the problem through the variational formulation. We study a generalized p-area and associated (p-) minimizers in general dimensions. We prove the existence and investigate the uniqueness of minimizers. Since this is re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008